

SK Geotechnical Company

# Landfill Liner

Authors: Ali Alrashed, Nayf Alotaibi, Joe Atkinson, and Xiaoyi Tan

4/28/2016

### Introduction

- Project Purpose: Create a liner for Cinder Lake Landfill, utilizing waste materials entering the waste stream.
- Project Location:
   Approximately 12 miles
   Northeast of Flagstaff on Highway 89.
- Landfill liner: Municipal landfill liner. 40 CFR, 258.

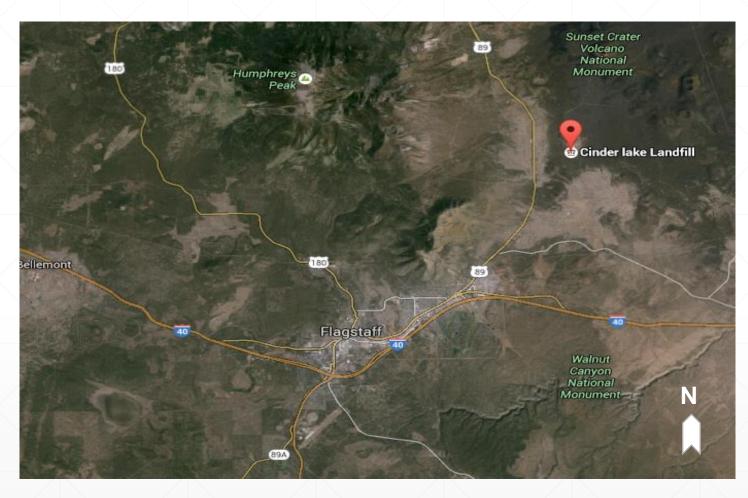



Figure 1: Cinder Lake Landfill Site Location [1]

# **Current Project Status**

- Cinder Lake Landfill is a 343-acre municipal solid waste landfill [2].
- The landfill accepts household, commercial, and institutional waste [2].
- The landfill receives approximately 279 tons of waste per day [2].
- The landfill serves approximately 17,000 residential and commercial units [2].
- The landfill grinds green waste, and wood waste to use them as an alternative daily cover [2].

Ali Alrashed

# Current Project Status Contd.

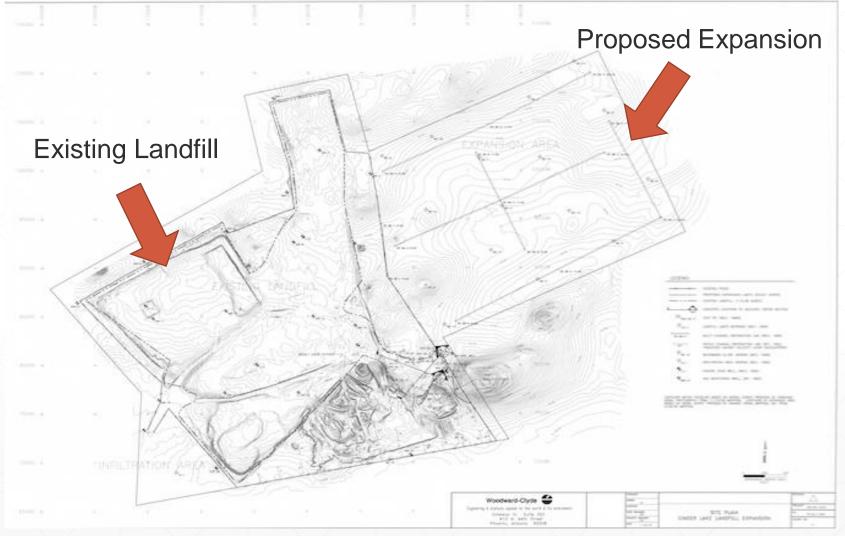



Figure 2: Cinder Lake Landfill Site [2]

Ali Alrashed

# **Technical Background**

#### Technical Background:

- Alternate liner will reduce materials entering the waste stream.
- Liner based on the design criteria from 40 CFR, 258 [3].
- Consists of 5 components:
- 1. Lime.
- 2. Soil.
- 3. Fly Ash.
- 4. Paper Millings (PPS).
- 5. Polymers.



### Stakeholders

### The stakeholders of the project are:

- The City of Flagstaff.
- Technical Advisor: Gerjen Slim, Lab Manager.
- Client: Mr. Matt Morales, Senior Project Manager.
- Customers who use Cinder Lake Landfill.



# **Technical Considerations and Potential Challenges**

### The designed landfill liner is required to meet the following criteria:

- Primary criteria: Hydraulic Permeability.
- Secondary criteria: Shear Strength and Proctor Compaction.
- EPA design regulations.

### Potential Challenges:

- Quality Assurance (QA), and Quality Control (QC).
- Material quality and characteristics.
- Mixture continuously changing.

# **Scope of Services**

#### 1.0 Health and Safety Protocols

- 1.1 Safety Protocol for Fly Ash.
- 1.2 Safety Protocol for PPS.
- 1.3 Safety Protocol for Polymers.
- 1.4 Personal Safety.

Deliverable: Lab Safety Certification for all members.

#### 2.0 Material Preparation

- 2.1 Fly Ash preparation.
- 2.2 PPS preparation.
- 2.3 Polymers preparation.
- 2.4 Soil preparation.
- 2.5 Lime preparation.

Deliverable: Lab hours log.

Xiaoyi Tan

# Scope of Services

#### 3.0 Materials Testing

3.1 Compaction test.

3.2 Permeability test.

Deliverables: Data collection.

#### 4.0 Data Analysis

Deliverable: Data spreadsheets.

#### 5.0 Project Management

5.1 Team meetings.

5.2 TA meetings.

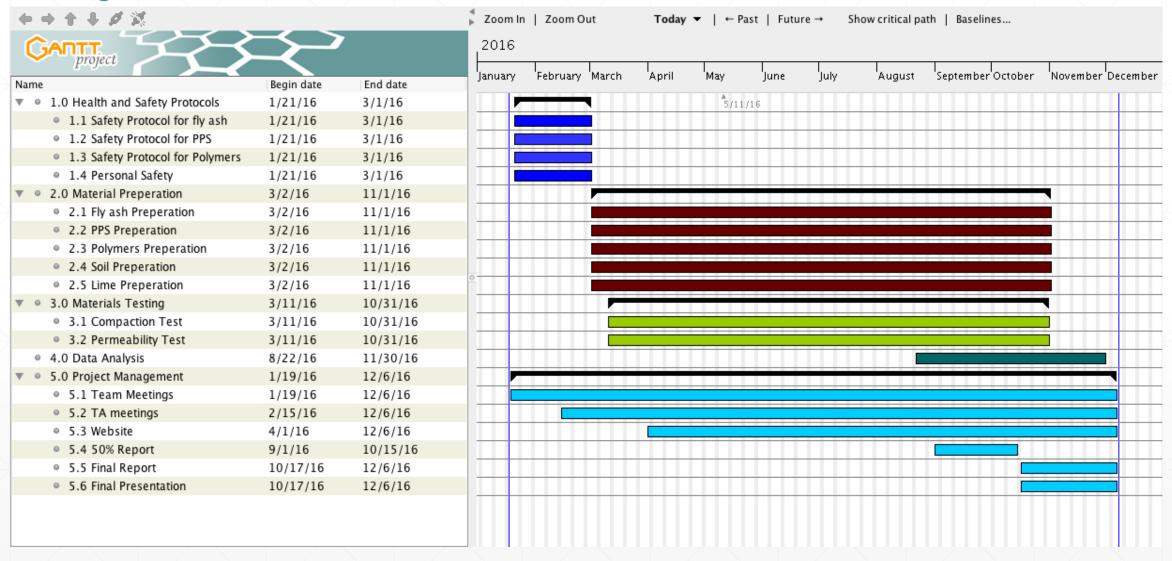
5.3 Website.

5.4 50% report.

5.5 Final report.

5.6 Final presentation.

Xiaoyi Tan


### **Exclusions**

#### The following tasks are excluded from this project:

- The team will not implement the final liner design.
- The team will not conduct Shear Strength tests.
- The team will not conduct California Bearing Ratio tests.

Xiaoyi Tan 10

# **Project Schedule**



Ali Alrashed 11

# **Staff and Cost**

Table 1: Positions and their codes

| Classification       | Code |  |
|----------------------|------|--|
| Development Engineer | DENG |  |
| Research Engineer    | RENG |  |
| Lab Technician       | LAB  |  |
| Engineering Intern   | INT  |  |

Nayf Alotaibi 12

### Staff and Cost Contd.

Table 2: Total Required Hours

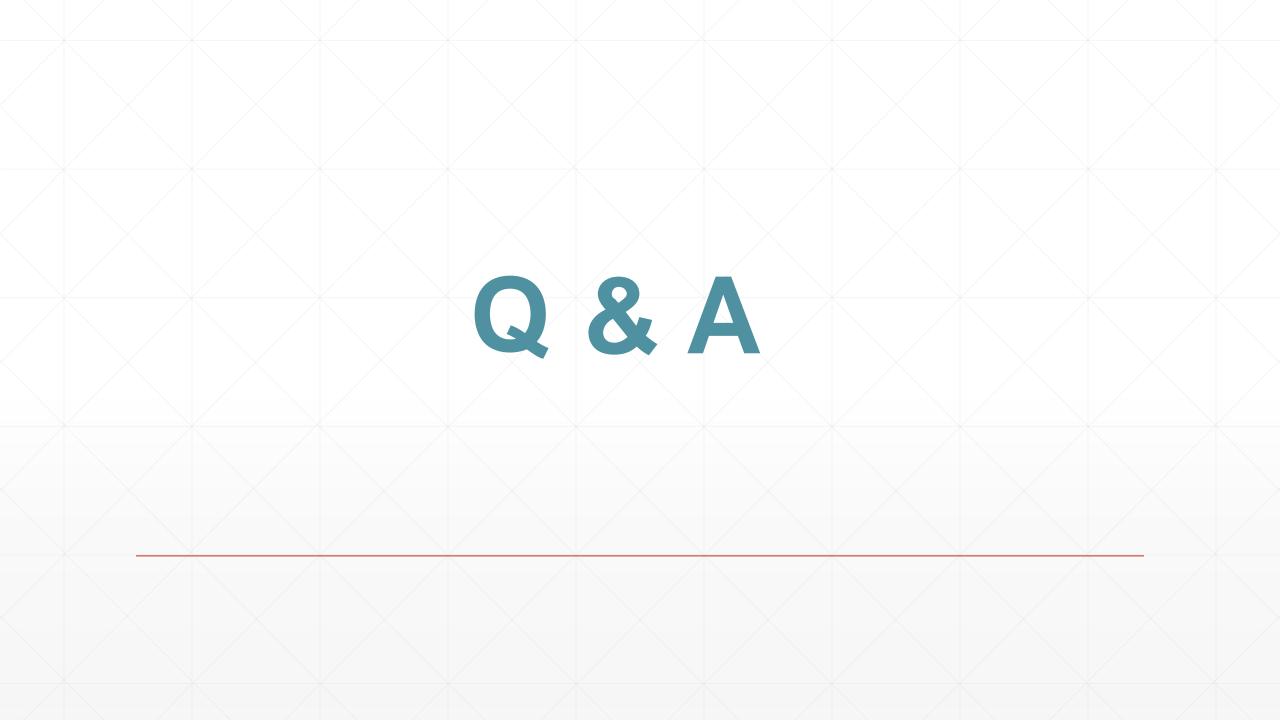
| Tasks                           | DENG (hours) | RENG (hours) | LAB (hours) | INT (hours) |  |  |  |  |
|---------------------------------|--------------|--------------|-------------|-------------|--|--|--|--|
| 1.0 Researching                 | 30           | 30           |             | 20          |  |  |  |  |
| 2.0 Health and Safety Protocols |              | 12           |             |             |  |  |  |  |
| 3.0 Materials Preparation       |              | 2            | 40          |             |  |  |  |  |
| 4.0 Materials Testing           |              | 3            | 300         |             |  |  |  |  |
| 5.0 Reporting Data              | 30           |              | 60          |             |  |  |  |  |
| 6.0 Project Management          | 10           | 60           | 30          | 40          |  |  |  |  |
| Subtotal                        | 70           | 107          | 430         | 60          |  |  |  |  |
| Total Hours = 667               |              |              |             |             |  |  |  |  |

Nayf Alotaibi 13

## Staff and Cost Contd.

Table 3: Total Personnel Costs

| Position             | Classification           | Hours       | Rate, \$/hr. | Cost        |  |
|----------------------|--------------------------|-------------|--------------|-------------|--|
| Development Engineer | DENG                     | 70          | 165          | \$11,550.00 |  |
| Research Engineer    | RENG                     | 106         | 90           | \$9,540.00  |  |
| Lab Assistant        | LAB                      | 430         | 60           | \$25,800.00 |  |
| Engineering Intern   | INT                      | 60          | 30           | \$1,800.00  |  |
|                      | Total personnel expenses |             |              | \$48,690.00 |  |
|                      | Lab rental               | 240 days    | \$30/day     | \$7,200.00  |  |
| Total                |                          | \$55,890.00 |              |             |  |


Nayf Alotaibi 14

### References

[1] Google Maps.

[2] "Cinder Lake Landfill," AEES, 2012, [Online]. Available: http://cefns.nau.edu/capstone/projects/CENE/2014/Landfill-Cell-D/Documents/CENE\_486\_Cell\_D\_Final\_Report.pdf. [Accessed: 20 April 2016].

[3] "Closure Criteria," U.S Government Publishing Office, 2016, [Online]. Available: http://www.ecfr.gov/cgi-bin/text-idx?SID=b67b217c1e8767c774a3aa0ff9bff80c&mc=true&node=se40.25.258\_160&rgn=div8. [Accessed: 20 April 2016].

